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Abstract We prepared the diastereoisomers of BINOL
based bisboronic acid chiral probes (the probes are with
dual chirogenic centers) for enantioselective recognition
of chiral analytes, such as tartaric acids, D-sorbitol, etc.
We found the diastereoisomeric probes give different
emission intensity-pH profiles, a phenomenon was
reported, probably, for the first time. We found that with
the second chirogenic center, the selectivity of the probes
toward chiral analytes can be improved. For example, the
diastereoisomeric probes give drastically different
response to D-sorbitol, the same selectivity was not
found for the BINOL bisboronic acid probes with single
chirogenic center. Our result with the diastereoisomeric
probes is helpful for design of new chiral molecular
probes to enhance the selectivity of the boronic acid
sensors toward chiral analytes.

Keywords Boronic acid . Chiral fluorescent
chemosensors . BINOL

Introduction

Chirality is important for many aspects, such as pharma-
ceutical, synthesis of natural product and molecular
recognition among the others [1]. Traditionally the chirality
of organic compounds can be analyzed with NMR or gas/
liquid chromatography, both methods are technically and
instrumentally demanding. Recently fluorescent molecular
probes are used for enantioselective detection of chiral
compounds [2–7]. Normally the chiral molecular recogni-
tion is based on hydrogen bonding between the chiral
molecular probe and the chiral analytes [8]. A few chiral
probes based on covalent bonds emerged and will be
promising for practical applications because these probes
can be used in aqueous solutions, whereas the probes based
on hydrogen bonding can not be used in aqueous solution
[9–20]. However, the number of the probes based on
covalent bond interaction for detection of organic molecules
is limited [9]. Boronic acid probes are in particular interest
due to its covalent bonding with sugars and α-hydroxyl
carboxylic acids, thus the recognition of sugars or poly
hydroxyl analytes with boronic acid probes can be per-
formed in aqueous solution [12–14].

We have been interested in boronic acid probes for a
while. Previously we used 1,1-bisnapthol (BINOL) based
boronic acid sensors to enantioselectively recognize D- and
L-tartaric acids [21]. Emission enhancement/diminishment
was observed for the enantiomers of tartaric acids. We also
prepared anthracene based bisboronic acids probes that
show good enantioselectivity toward tartaric acids, sugar
acids and sugar alcohols [22–24]. More recently, we found
that carbazole based bisboronic acid probes show good
enantioselectivity toward tartaric acids, as well as the novel
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d-PET effect (i.e. the fluorophore serves as the electron
donor of the photo-induced electron transfer process) [16,
19, 20]. However, for all these chiral sensors, there is only a
single chirogenic center. Inspired by the multi-hydrogen
bonding motif of the natural glucose receptor, lactin [25].
we envision that by introducing an extra chirogenic center to
the bisboronic acid probe molecules, the enantioselectivity of
the boronic acid probes may probably be improved [26, 27].
To the best of our knowledge, however, no boronic acid
sensors with dual chirogenic centers has been reported.

Herein we devised the BINOL based bisboronic acid
probe 1. Besides the BINOL’s axial chirogenic center, we
attached the second chirogenic center to the molecule by
using the chiral methyl benzylamine (R- and S-) (Scheme 1).
Thus four isomers were prepared, i.e. R,R-1, R,S-1, S,R-1
and S,S-1 (the first character denotes the chirogenic center
of BINOL and the second character denotes the chirality of
the methylbenzylamine). The synthesis of the chiral probes
was outlined in Scheme 1. All the probes were obtained with
satisfying yields. We found that the emission intensity-pH
profile of the probes is different for the diastereoisomers. To
the best of knowledge, this is the first time that such an
emission intensity-pH profile was observed. Furthermore,
the recognition of tartaric acids was performed and we found
that the enantioselectivity of the BINOL bisboronic acid
probes were altered with introduce of the second chirogenic
center. For example, the diastereoisomeric probes show
enantioselectivity on the recognition of the sorbitol.

Experimental

Materials and General Methods

All the chemicals are analytical pure and were used as
received. NMR spectra were taken on a 400 MHz Varian
Unity Inova spectrophotometer. Mass spectra were recorded
with Q-TOF Micro MS spectrometer. Fluorescence spectra
were recorded on a JASCO FP-6500 or a Sanco 970 CRT
spectrofluorometer.

(R)-and(S)2,2′-Dimethoxy-1,1′-dinaphthalene-
3-carboxaldehyde (compound R-3 and S-3)

Under N2 atmosphere, (R)-2, 2′-dimethoxy-1, 1′-binaph-
thalenean (2.4 g, 7.5 mmol) was suspended in dry benzene
(60 mL). N,N,N′,N′-tetramethylethylenediamine(TMEDA)
(1.08 g, 9.3 mmol) was added into the above solution. Then
4.5 mL (2.5 M, 11.3 mmol) n-BuLi/Hexane solution was
added dropwise. The mixture was stirred at r.t. for 16 h.
Then dry DMF (0.92 g, 0.75 mL, 9.6 mmol) was added in
via syringe with ice bath cooling. After 30 min, the reaction
was quenched with half-concentrated HCl (9 mL). The
organic phase was washed with brine (2×30 mL) and the
aqueous phase was extracted with CH2Cl2 (2×30 mL). The
organic phase was combined together and dried over
Na2SO4. The solvent was removed in vacuum and the
residual was purified with column chromatography
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(silica gel, CH2Cl2:CH3OH=100:1, v/v). Yield: 920.0 mg,
32.9%. 1H NMR (400 MHz, CDC13), δ 10.57(s, 2 H), δ
8.64(s, 2 H), δ 8.10-8.08(d, 2 H, J=8.0), δ 7.51–7.18(m, 6
H), δ 3.51(s, 6 H).

(R,R)-,(R,S)-,(S,R)-and (R,R)- N,N′-(2,2′-dimethoxy-1,
1′-binaphthalene-3,3′-diyl) bis(methylene)
bis(1-phenylethanamine) (compound R,R-4,
R,S-4, S,R-4 and S,S-4)

(R)-1-Phenylthanamine (0.52 g, 4.26 mmol) was added to
(R)-2, 2′dimethoxy-1, 1′-binaphthalene-3- carboxyalde-
hyde (400 mg, 1.16 mmol) solution in absolute ethanol
under nitrogen atmosphere, the reaction mixture was
refluxed with stirring for 18 h. The solution was
concentrated under reduced pressure and the residue was
washed with 20 mL water. The aqueous solution was
extracted with CH2Cl2 (3×50 mL). The combined organic
phase was dried over Na2SO4. The solvent was removed
under reduced pressure and the residual was purified with
column chromatography (silica gel, CH2Cl2:CH3OH=
20:1, v/v) and the solvent was removed under reduced

pressure to give the amine as a yellow solid (R,R-4).Yield:
345.0 mg, 55.0%. 1H NMR (400 MHz, CDC13),δ 7.86-
7.83(t, 4 H), δ 7.40-7.11(m, 16 H), δ 4.00-3.97 (d, 2 H), δ
3.88-3.81(m,4 H), δ 3.24 (s, 6 H), δ 1.43 (d, 2 H, J=8 Hz).
ESI-HRMS: m/z (C40H40N2O2 + H+) calcd 581.3168,
found 581.3182.

R,S-4 was prepared with the similar method. Yield:
390.0 mg, 62.2%. 1H NMR (400 MHz, CDC13), δ 7.93-
7.83 (t, 4 H) δ 7.41-7.12 (m, 16 H), δ 3.93 -3.88 (t, 6 H), δ
3.22 (s, 6 H), δ 1.44 (d, 2 H, J=8.0 Hz). ESI-HRMS: m/z
(C40H40N2O2 + H+) calcd 581.3168, found 581.3181.

S,R-4 was prepared with the similar method. Yield:
385.0 mg, 61.4%. 1H NMR (400 MHz, CDC13), δ 7.92-
7.84 (t, 4 H) δ 7.42-7.11 (m, 16 H), δ 3.92(s,4 H), δ 3.90-
3.88 (t, 2 H), δ 3.22 (s, 6 H), δ 1.44 (d, 6 H, J=8 Hz). ESI-
HRMS: m/z (C40H40N2O2 + H+) calcd 581.3168, found
581.3167. S,S-4 was prepared with the similar method.
Yield: 393 mg, 62.67%.1H NMR (400 MHz, CDC13), δ
7.86-7.84(m, 4 H), δ 7.41-7.11(m, 16 H), δ 3.97(d, 2 H,
J=12), δ 3.89-3.81(m, 4 H), δ 3.24(s, 6 H), δ 1.43(d, 6 H,
J=8.0 Hz), ESI-HRMS: m/z (C40H40N2O2 + H+) calcd
581.3268, found 581.3267.
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Fig. 1 1H NMR spectra of the S,S-4 and S,R-4 amine and partial 1H NMR spectra of the sensors S,S-1 and S,R-1: demonstration of the chiral
steric environment of diastereoisomeric amines and the probes by the protons on methylene moiety
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(R,R)-,(R,S)-,(S,R)-and (R,R)-2,2′-(2,2′-dimethox)-1,
1′-binaphthyl-3,3′diyl,bis(methylene)bis (1-Phenylethyl),
azanediyl, bis (methylene) bis(2,1-phenylene) bisboronic
acid sensor (sensor R,R-1, R,S-1, S,R-1 and S,S-1)

At room temperature 4.4 equiv of 2-formylphenylboronic
acid (214.0 mg, 1.42 mmol) was added to a solution of R,R-
4 (185.0 mg, 0.35 mmol) in 15 mL methanol. The system
was stirred for 2 h and 10 equiv of NaBH4 (0.65 g,
17.6 mmol) was added in several portions. The mixture was
stirred for another 1 h. The solvent was removed under
reduced pressure, and the resulting solid was dissolved in
20 mL of water and the aqueous phase was extracted with
CH2Cl2 (3×30 mL). The organic phase was dried over
sodium sulfate. The solvent was removed under vacuum
and the crude product was purified with column chroma-

tography (Al2O3, dichloromethane: methanol = 100: 1, v/v).
The solvent was removed under reduced pressure and a
white solid (R,R-1) was obtained. Yield: 130.0 mg, 48.2%.
1H NMR (400 MHz, CDC13 + CD3OD), δ 7.86-7.82 (m, 6
H), δ 7.36-7.09 (m, 22 H), δ 4.18 -4.17 (m, 2 H), δ 3.94-
3.81 (m, 8 H), δ 3.00 (s, 6 H), δ 1.59 (d, 6 H, J=6.8 Hz).
1 3C NMR(100 MHz , CDC l 3 + CD3OD) , δ
155.60,141.99,139.56, 136.25, 134.25,132.29, 131.44,
130.19, 130.12, 129.36, 128.25, 128.04, 127.67, 127.33,
126.38, 125.80, 124.74, 60.47, 57.96, 57.64, 47.94, 14.26.
[α]D

25=+27.6 ° (c=0.25 in CH2Cl2). ESI-HRMS: m/z
(C54H54B2N2O6+ 2CH3OH - 2H2O + H+) calcd 845.4297,
found 845.4316.

R,S-1 was prepared with the similar method. Yield:
135.0 mg, 50.0%. 1H NMR (400 MHz, CDC13 + CD3OD):
δ 7.92-7.83(m, 6 H), δ 7.38-7.08 (m, 22 H), δ 4.19-4.11 m,
6 H), δ 3.61-3.50 (m, 8 H), δ 3.13 (s, 6 H), δ 1.63 (d, 6 H,
J=6.8). 13C NMR(100 MHz, CDCl3 + CD3OD), δ 155.48,
141.84, 139.39, 136.17, 135.09, 134.12, 132.18, 131.55,
130.35, 130.05, 129.24, 128.13, 127.93, 127.55, 127.22,
126.27, 125.67. [α]D

25=50.5 ° (c=0.25 in CH2Cl2). ESI-
HRMS: m/z (C54H54B2N2O6 + CH3OH - 2H2O + H+) calcd
845.4297, found 845.4310.

S,R-1 was prepared with the similar method. Yield:
106.0 mg, 39.2%. 1H NMR (400 MHz, CDC13 + CD3OD),
δ 7.91-7.83(m, 6 H), δ 7.80-7.10 (m, 22 H), δ 4.21-4.10 (m,
6 H), δ 3.63-3.42 (m, 8 H), δ 3.13(s, 6 H), δ 1.63(d, 6 H,
J = 6 .8 Hz ) . 1 3C NMR (100 MHz,CDCl3 ) , δ
155.63,142.02,138.92, 136.33,134.31,131.60,130.47,
130.24,130.09, 129.49, 128.26, 128.01, 127.72, 127.31,
126.41, 125.86, 124.78, 60.52, 58.08, 58.57, 48.48, 16.04.
[α]D

25 = − 49.6 ° (c=0.25 in CH2Cl2). ESI-HRMS: m/z
(C54H54B2N2O6 + CH3OH-2H2O + H+) calcd 845.4297,
found 845.4280.

S,S-1 was prepared with the similar method. Yield:
120.0 mg, 44.4%. 1H NMR (400 MHz, CDC13 + CD3OD),
δ 7.89-7.82(m, 6 H), δ 7.38-7.10(m, 22 H), δ 4.21-4.18(m,
2 H), δ 3.93-3.37(m, 12 H), δ 2.99(s, 6 H), δ 1.59(d, 6 H,
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Fig. 2 Fluorescence excitation and emission spectra of S,S-1. lex=
307 nm. lem=360 nm. c=1.0×10−5 mol dm−3 in 0.05 mol dm−3 NaCl
(52.1% methanol in water)
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Fig. 3 Fluorescence intensity–
pH profiles for the probes alone
and in the presence of D- and
L-tartaric acid. a S,S-1, c=1.0×
10−6 mol dm−3 and (b)
S,R-1. 2.3×10−7 mol dm−3 in
0.05 mol dm−3 NaCl solution
(52.1% methanol in water),
c(D-tartaric acid)=c(L-tartaric
acid)=0.02 mol dm−3,
lex=307 nm, lem=360 nm.
20 °C
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J=6.8 Hz). 13C NMR(100 MHz, CDC13 + CD3OD), δ
155.48, 141.84, 138.63, 136.20, 134.16, 131.48, 130.26,
130.06, 129.98, 129.35, 128.12, 127.87, 127.60, 127.18,
126.29, 125.71, 124.66, 123.60, 60.40, 57.82, 57.35, 48.29,
15.95. [α]D

25 = −23.7 °(c=0.25 in CH2Cl2). ESI-HRMS:
m/z (C54H54B2N2O6 + CH3OH-2H2O + H+) calcd
845.4297, found 845.4328.

Results and Discussions

Synthesis BINOL was used as the starting material for the
synthesis of the chiral probes (Scheme 1). First BINOL was
methylated with methyl iodide. Then the methyl ether was
formylated in the presence of BuLi and DMF. The chiral
methylbenzylamine was used to prepare the chiral amine.
Finally the boronic acid binding sites were introduced.
Totally four probes were prepared, i.e. R,R-1, R,S-1, S,S-1
and S,R-1. The chiral bisboronic acid molecular probes
were obtained with satisfying yields.

We found that the chirogenic centers of the diastereoiso-
meric amines and the sensors can be indicated by the 1H
NMR spectra (Fig. 1). For example, the methylene protons
of S,R-4 gives peaks at about 3.9 ppm, infers that the
chirogenic environment around the methylene protons are
not strong. For the S,S-4, however, the methylene protons’
signal is more resolved, thus propose that the chirogenic

environment around the methylene protons are stronger
than that in S,S-4. Difficult methylene proton signal profiles
were observed for S,R-1 and S,S-1 (Fig. 1b). Thus we
propose that it is possible to use the diastereoisomeric
sensors to enantioselectively recognize the chiral analytes.

The emission and the excitation of the probe were
studied (Fig. 2). The excitation is centered at 300 nm and
325 nm. A single emission band at 360 nm was observed.
The Stokes shift is 53 nm. The small Stokes shift may be
responsible for the asymmetric band shape of the emission
(due to the inner-filter effect, i.e. the emission at the short
wavelength side is re-absorbed by the probe molecules).
The spectra are similar to the BINOL based molecular
probes [21, 27].

Firstly the pH titration of the S,S-1 and S,R-1 was
studied (Fig. 3). For S,S-1, normal pH titration curve of the
Wolff type of boronic acid sensors was observed [12]. The
emission at acidic pH is stronger than that of neutral and
basic pH. The apparent pKa value is 6.65. Novel chiral
recognition fluorescence transduction was observed, e.g. in
acidic pH region, the emission intensity was decreased in
the presence of D-tartaric acid, but the emission was
intensified in the presence of L-tartaric acid. Such an
emission enhancement/diminishment against the enantiomers
of the chiral analytes was rarely reported. Previously we
reported the first example of such as enantioselective
molecular recognition transduction with BINOL boronic acid
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Fig. 4 Chiral discrimination of
D- and L-tartaric acid by (a)
S,S-1 and (b) S,R-1 (right)
at pH=5.6. cprobes=2.3×
10−7 mol dm−3, in
0.05 mol dm−3 NaCl
(52.1% methanol in water),
lex=307 nm. lem=360 nm.
20 °C

sensor pH=5.6 pH=7.0

L-tartaric acid D-tartaric acid L-tartaric acid D-tartaric acid

S,S-1 (9.88±2.20)×105 (1.54±0.21)×105 (1.14±0.10)×105 (1.45±0.13)×104

S,R-1 (2.67±1.00)×105 (1.22±0.28)×105 (5.26±1.65)×104 (6.45±0.82)×104

R,R-1 (1.27±0.70)×105 (4.18±1.86)×105 (2.58±0.75)×103 (6.43±1.11)×104

R,S-1 (2.95±0.56)×102 (2.50±0.50)×104 (1.33±0.49)×105 (3.41±1.06)×104

Table 1 Binding constants
(M−1) of the diastereoisomeric
bisboronic acid probes with
the analytes
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probes and tartaric acid [21]. Recently we also observed this
phenomena for a carbazole based chiral bisboronic acid
probe [16].

Interestingly, different pH titration profile was observed
for the diastereoisomer, S,R-1 (Fig. 3b). The pH titration
curve gives a maximum in the neutral pH region, but gives
weak emission in both the acidic and the basic region. The
two apparent pKa values of S,R-1 were determined as ca.
9.0 and 5.0. For enantiomeric probes, strictly the same pH
titration profiles were observed [16, 22]. The different pH
titration profile of S,S-1 and S,R-1 can be rationalized by
the fact that they are diastereoisomers, not enantiomers.
Diastereoisomers can give different properties, such as
solubility. We propose that the different pH titration profile
of S,S-1 and S,R-1 is due to the diastereoisomerity of the
two probes. To the best of knowledge, this is probably the
first time that such a phenomenon was reported. This novel
response can be used to develop new sensing motifs for
chiral probes.

The enantioselective covalent bond interaction between the
probes and tartaric acid was proved by the concentration titration
(Fig. 4). For example, the emission intensity was increased

with increasing the concentration of L-tartaric acid, but
decreased with increasing the concentration of D-tartaric acid
(Fig. 4a). The binding constants of S,S-1 with D- and L-tartaric
acid are (1.54±0.21)×105 M−1 and (9.88±2.20)×105 M−1,
respectively (Table 1). Thus the enantioselectivity is 1:6.4.

With the diastereoisomer, i.e. S,R-1, the fluorescence
transduction profile is reversed. However, the binding
constants of the S,R-1 with D- and L-tartaric acids are
different from that of S,S-1. This difference is attributed to
the presence of the second chirogenic center in the probes,
i.e. the enantioselectivity can be affected by the second
chirogenic center in the probe molecule.

Enantioselective recognition of the tartaric acids was
also observed at pH 7.0 (Fig. 5). For example, with S,S-1,
fluorescence enhancement was observed with L-tartaric
acid, but the fluorescence emission was quenched in the
presence of D-tartaric acid (Fig. 5a). With the S,R-1
(Fig. 5b), however, the recognition profile is reversed, that
is, the quenching is more significant that that with S,S-1.
The binding constants were collected in Table 1.

We also used the chiral probes with dual-chirogenic
centers to recognize larger analytes, such as D-sorbitol. We
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Fig. 5 Chiral discrimination of
D- and L-tartaric acid by (a)
S,S-1 and (b) S,R-1 at pH=7.0.
c=2.3×10−7 mol dm−3, in
0.05 mol dm−3 NaCl (52.1%
methanol in water), lex=
307 nm. lem=360 nm. 20 °C
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expected that with the second chirogenic center and more
stereo hindered binding pockets the enantioselective recog-
nition of D-sorbitol may be achieved. The pH titration of
the probes in the presence of D-sorbitol were studied
(Fig. 6a). For the S,S-1, the emission in the neutral and
basic pH region was intensified. For the S,R-1, however, the
emission intensity is nearly un-changed. Thus the diaste-
reoisomeric probes S,S-1 and S,R-1 give significant
different binding with D-sorbitol. Thus the diastereoselec-
tivity is good. This different response was proved by the
concentration titration (Fig. 4b). With increasing the
concentration of D-sorbitol, the emission of the S,S-1 was
enhanced but the emission of S,R-1 was decreased. This
sensing profile is in stark contrast to the previously
reported BINOL chiral probes, which show no selectivity
toward D-sorbitol. The enantiomers of the probes, i.e. R,R-
1 and R,S-1 were also studied and similar results were
observed (see Supporting Information).

To the best of our knowledge, this is the first time that
diastereoisomeric boronic acid probes were reported. We
noticed that BINOL based diastereoisomeric probes have
been reported [26]. However, those reported probes are
based on hydrogen bonding interaction, not covalent
bonding. No pH titration of the diastereoisomeric probes
was reported and our result is the first one that shows
different pH-emission intensity profiles for the diastereo-
isomeric fluorescent molecular probes.

Conclusions

In summary, diastereoisomeric BINOL based fluorescent
boronic acid probes (i.e. the probe molecules are with
dual chirogenic centers) were prepared and the interac-
tion between the probes and the sugar acids (such as
tartaric acid and sorbitol) were studied. We found that
the diastereoisomers of the chiral probes show different
emission-pH profiles, which is in stark contrast from
the enantiomeric probes. Furthermore, we found that
the selectivity on tartaric acid was enhanced by the
second chirogenic center. Our results are helpful for
design of diastereoisomeric boronic acid sensors to
enhance the selectivity of the enantioselective molecular
recognition.

Supporting Information Available

General experimental methods, 1H and 13C NMR data of
the compounds and photophysical data. This material is
available free of charge via the Internet.
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